

K21U 4553

Reg. No.:

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021

(2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B08 MAT : Differential Equations and Laplace Transforms

Time : 3 Hours Max. Marks : 48

PART – A (Short Answer)

Answer any four questions. Each question carries 1 mark.

- 1. Verify that $y = e^{2x^2}$ is a solution of the ODE y' 4xy = 0.
- Give an example of a first order nonlinear ODE.
- Find a basis of solutions of the ODE y" 4y = 0.
- 4. What is Euler-Cauchy equations?
- 5. State convolution theorem.

 $(4 \times 1 = 4)$

PART – B (Short Essay)

Answer any eight questions. Each question carries 2 marks.

- Solve the initial value problem y' = 6y, y(0) = 2.
- 7. Does the initial value problem xy' = y 1 has a unique solution? Justify.
- 8. Solve the IVP y' = -4x/y, y(2) = 3.
- Find the general solution of y' + ky = e^{-kx}.
- 10. Find the general solution of 4y'' 25y = 0.

Chattanchal Land Condition of the Policy Chattanchal Land Condition of the Policy Condition of the Pol

K21U 4553

- 11. Factor $P(D) = D^2 3D 40I$ and solve P(D)y = 0.
- 12. Find the general solution of $x^2y'' 5xy' + 9y = 0$.
- 13. Find the Wronskian of cos 6x and sin 6x.
- 14. Find the inverse transform f(t) of F(s) = $\frac{e^{-8}}{s^2+4} + \frac{e^{-28}}{s^2+1} + \frac{e^{-38}}{(s+2)^2}$
- 15. Find the Laplace transform of tsin2t.
- 16. Find the inverse transform of $\frac{1}{s(s^2+9)}$. (8×2=16)

PART - ((Essay)

Answer any four questions. Each question carries 4 marks.

- 17. Solve the IVP $e^{2x}(2\cos y dx \sin y dy) = 0$, y(0) = 0.
- 18. Find the general solution of $y' = 1/(6e^y 2x)$.
- 19. Solve y'' + y' = 0 by reducing it to first order.
- 20. Solve the IVP y'' + y' 6y = 0, y(0) = 10, y'(0) = 0.
- 21. Solve the nonhomogeneous ODE y" + y = secx.
- 22. Find the Laplace transform of the function $f(t) = \begin{cases} 2, & \text{if } 0 < t < 1 \\ \frac{1}{2}t^2, & \text{if } 1 < t < \frac{1}{2}\pi \\ \cos t, & \text{if } t > \frac{1}{2}\pi. \end{cases}$
- 23. Solve the IVP $y'' + 3y' + 2y = \delta(t 1)$, y(0) = 0, y'(0) = 0 by Laplace transform. (4×4=16)

K21U 4553

PART – D (Long Essay)

Answer any two questions. Each question carries 6 marks.

- 24. Solve $2xyy' = y^2 x^2$ by reducing it to variable separable form.
- 25. Solve the IVP $(e^{x+y} + ye^y) dx + (xe^y 1) dy = 0$, y(0) = -1.
- 26. Solve the initial value problem $y'' 6y' + 9y = e^{3x}$, y(0) = 1, y'(0) = 1.
- 27. Solve the integral equation $y(t) \int_{0}^{t} (1+\tau)y(t\tau)d\tau = 1 \sinh t$ by Laplace (2×6=12)