K22U 0413

Reg. No.:

Name :

VI Semester B.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2022 (2019 Admission)

CORE COURSE IN MATHEMATICS 6B10 MAT : Real Analysis – II

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- 1. Show that $f(x) = x^2$ defined on [0, 3] is uniformly continuous.
- Define Riemann integral of a function f over [a, b].
- 3. Test the convergence of the integral $\int_{x}^{1} \frac{1}{1-x} dx$
- 4. Show that $\beta(m, n) = \beta(n, m)$.
- 5. Define a metric on a set S.

PART - F

Answer any eight questions. Each question carries two marks.

- Let f: A → R is a Lipschitz function. Show that f is uniformly continuous on A.
- If f and g are increasing functions on A, then show that f + g is an increasing function on A.
- 8. If $f \in \mathcal{R}[a, b]$, then prove that f is bounded on [a, b].
- Show that every constant function on [a, b] is Riemann integrable.
- 10. If f, $g \in \mathcal{R}[a, b]$, and $f(x) \le g(x)$ for all $x \in [a, b]$, then prove that $\int_a^b f \le \int_a^b g$.

11. Evaluate $\int_{0}^{3} \frac{1}{(x-1)^{3/2}} dx$.

12. Test the convergence of the integral $\int_1^x \frac{\sin^2 x}{x^2} dx$

13. Show that $\beta(p, q) = \int_{0}^{\pi/2} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta$

14. Let S be a nonempty set. For s, t ∈ S, define

$$d(s, t) = \begin{cases} 1 & \text{if } s \neq t \\ 0 & \text{if } s = t \end{cases}$$

Show that d is a metric on S.

15. Let $f_n(x) = x + \frac{1}{n}$ for $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Show that f_n converges to f(x) = x uniformly on \mathbb{R} .

16. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n!} x^n$

Answer any four questions. Each question carries four marks.

 Let I be a closed bounded interval and let f: I → R be continuous on I, then show that f is uniformly continuous on I.

18. Suppose $f: [a, b] \to \mathbb{R}$ is continuous on [a, b]. Show that $f \in \mathcal{R}[a, b]$.

19. Suppose $g \in \mathcal{R}[a,b]$ and f(x) = g(x) except for a finite number of points on [a,b]. Show that $f \in \mathcal{R}[a,b]$ and $\int\limits_a^b f = \int\limits_a^b g$.

20. Show that $\Gamma n \cdot \Gamma (1-n) = \frac{\pi}{\sin n\pi}$

21. Evaluate $\Gamma\left(\frac{1}{2}\right)$ and $\Gamma\left(-\frac{1}{2}\right)$

22. Evaluate $\int_{1}^{1} \frac{dx}{x^{2/3}}$.

23. Let $f_n(x) = x^n$ for $x \in [0, 1]$ and $n \in \mathbb{N}$. Find a function g(x) in [0, 1] such that f_n converges to g pointwise on [0, 1].

PART - D

Answer any two questions. Each question carries 6 marks.

- 24. Let $I \subset R$ be an interval, $f:I \to \mathbb{R}$ be strictly monotone and continuous on I. Show that the function g inverse to f is strictly monotone and continuous on
- 25. State and prove Cauchy Criterion for Riemann integrability.

26. a) Show that
$$\int_{0}^{\pi} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1} & \text{if } p > 1 \\ \infty & \text{if } p < 1 \end{cases}$$

- b) Show that $\beta\left(m,n\right) = \frac{\Gamma m \cdot \Gamma n}{\Gamma\left(m+n\right)}$.
- 27. Let f_n be a sequence of functions in $\mathcal{R}[a,b]$ and f_n converges uniformly on [a,b] to f. Show that $f\in\mathcal{R}[a,b]$ and $\int\limits_a^b f=\lim_{n\to\infty}\int\limits_a^b f_n$.