THE RESIDENCE OF THE REAL PROPERTY OF

K21U 1532

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Sup./Imp.) Examination, November 2021 (2015 – '18 Admns.)

CORE COURSE IN MATHEMATICS

5B05MAT : Real Analysis

Time: 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions. Each carries 1 mark.

- 1. Write the Supremum of $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
- 2. Define contractive sequences.
- 3. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.
- State sequential criterion for continuity.

SECTION - B

Answer any eight questions. Each carries 2 marks.

- 5. Find all $x \in \mathbb{R}$ such that $\frac{2x+1}{x+2} < 1$.
- 6. If x > -1, show that $(1 + x)^n \ge 1 + nx \ \forall n \in \mathbb{N}$.
- 7. If t > 0, prove that there is an n_t in \mathbb{N} such that $0 < \frac{1}{n_t} < t$.
- Show that convergent sequences in R are bounded.
- 9. Suppose $X=(x_n)$, $Y=(y_n)$ and $Z=(z_n)$ are sequences in $\mathbb R$ such that $x_n\leq y_n\leq z_n \forall n\in \mathbb N$ and $\lim(x_n)=\lim(z_n)$. Show that $Y=(y_n)$ is convergent and $\lim(x_n)=\lim(y_n)=\lim(z_n)$.
- 10. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges.
- 11. Check the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

- 12. State and prove Abel's Lemma.
- Let I be an interval and let f: I → R be continuous on I. Show that f(I) is an interval.
- 14. If f: I → R is uniformly continuous on a subset A of R and if (x_n) is a Cauchy sequence in A. Show that (f(x_n)) is also a Cauchy sequence in R.

SECTION - C

Answer any four questions. Each carries 4 marks.

- 15. Show that the set ⊕ of rational numbers is dense in the set ℝ of real numbers.
- 16. For a, $b \in \mathbb{R}$, show that $|a + b| \le |a| + |b|$ and deduce $|a| |b| \le |a b|$.
- 17. Let (x_n) be a sequence of real numbers such that $L = \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right)$ exists and let L < 1. Show that (x_n) converges and $\lim_{n \to \infty} (x_n) = 0$.
- 18. State and prove the limit comparison test for series.
- Let Z = (z_n) be a decreasing sequence of strictly positive numbers with lim(z_n) = 0.
 Show that the alternating series ∑(-1)ⁿ⁺¹z_n is convergent.
- 20. Let I = [a, b] be a closed bounded interval and let f: I → R be continuous on I.
 Show that f has an absolute maximum and an absolute minimum on I.

SECTION - D

Answer any two questions. Each carries 6 marks.

- 21. a) State and prove nested intervals property.
 - b) Using nested intervals property, show that [0, 1] is uncountable.
- a) A sequence of real numbers is convergent if and only if it is a Cauchy sequence. Prove.
 - b) Show that $\lim_{n \to \infty} (n^{\frac{1}{n}}) = 1$.
- 23. a) State and prove Raabe's test.
 - b) If a and b are positive numbers, show that ∑(an + b)^{-p} converges if p > 1 and diverges if p ≤ 1.
- 24. a) Let I = [a, b] and let f: I → R be continuous on I. If f(a) < 0 < f(b), then there exists a number c ∈(a, b) such that f(c) =0.</p>
 - Show that every polynomial of odd degree with real coefficients has at least one real root.