国政策和股份担继证目

00 100 E

K21U 1125

Reg. No. :

IV Semester B.Sc. Degree CBCSS (OBE) Regular Examination, April 2021
(2019 Admission Only)
CORE COURSE IN MATHEMATICS

4B04 MAT : Number Theory and Applications of Integrals

Time: 3 Hours

Max. Marks: 48

PART – A (Short Answer Type)

Answer any four out of five questions. Each question carries 1 mark.

- 1. State the Division Algorithm.
- 2. Find the lcm (31, 25).
- Check whether the Diophantine equation 6x + 51y = 22 is solvable.
- What is a pseudoprime ? Give an example.
 - 5. State the Euler's theorem.

(4×1=4)

PART- B (Short Essay Type)

Answer any eight out of eleven questions. Each question carries 2 marks.

- If a|bc, with gcd (a, b) = 1, show that a|c.
- 7. Find the gcd (12378, 3054).
- For any choice of positive integers a and b, show that lcm (a, b) = ab if and only if gcd (a, b) = 1.
- Give an example to show that a² = b² (mod n) need not imply that a = b (mod n).
- 10. If p is a prime, then show that a" = a(mod p) for any integer a.

(4×4=16)

- 11. Evaluate \int \tan x \sec^2 x \, dx.
- 12. Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 4.
- Find the area of the region in the xy plane enclosed by the cardioid r = 2(1 + cos 0).
- 14. The region between the curve y = √x , 0 ≤ x ≤ 4, and the x-axis is revolved about the x-axis to generate a solid. Find its volume.
- 15. Find the volume of the solid generated by revolving the region between the y-axis and the curve $x=\frac{2}{y}$, $1 \le y \le 4$, about the y-axis.
- The circle x⁰ + y⁰ = a⁰ is rotated about the x-axis to generate a sphere.
 Find its volume.

 (8x2=16)

PART - C (Essay Type)

Answer any four out of seven questions. Each question carries 4 marks.

- 17. Determine all solutions in the integers of the Diophantine equation 5x + 22y = 18.
- 18. For any positive integers a and b, show that a = b(mod n) if and only if a and b leave the same remainder when divided by n.
 - 19. If p is a prime, prove that for any integer a,

 $p / a^p + a(p - 1)!$ and $p / a^p(p - 1)! + a$.

- Find the area of the region enclosed by the parabola y = 2 x⁰ and the line y = -x.
- 21. Find the length of the graph of $f(x) = \frac{x^2}{12} + \frac{1}{x}$, $1 \le x \le 4$.
- The region bounded by the curve y = x² + 1 and the line y = -x + 3 is revolved about the x axis to generate a solid. Find the volume of the solid.
- 23. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the x axis.

-3

PART – D (Long Essay Type)

Answer any two out of four questions. Each question carries 6 marks.

- 24 State and prove the Fundamental Theorem of Arithmetic.
- 25. Prove that the quadratic congruence $x^p + 1 = 0 \pmod{p}$, where p is an odd prime, has a solution if and only if $p = 1 \pmod{4}$.
- 26. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x axis and the line y = x 2.
- 27. Find the volume of the solid generated by revolving the region between the parabola $x = y^a + 1$ about the line x = 3. (2x6=12)