

Reg.	No.	3	***************************************
Mans			

VI Semester B.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2022 (2019 Admission)

CORE COURSE IN MATHEMATICS 6B13 MAT : Linear Algebra

Time: 3 Hours Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- Find the equation of the line passing through the points (3, -2, 4) and (-5, 7, 1).
- State true or false: A set consisting of a single non zero vector is linearly dependent.
- Define the formula for the linear transformation that rotates a vector (a₁, a₂) in R² counter clockwise through an angle θ.
- 4. State Dimension Theorem.
- 5. What is the smallest possible nullity of a 3 x 5 matrix ?

PART - B

Answer any eight questions. Each question carries two marks.

- Let S = {(a₁, a₂) | a₁, a₂ ∈ ℝ}. Define (a₁, a₂) + (b₁, b₂) = (a₁ + b₁, a₂ b₂) and c(a₁, a₂) = (ca₁, ca₂). Is S a vector space? Justify your answer.
- Show that the set of all n × n matrices having trace equal to zero is a subspace of M_{n × n}(F).
- Let W be a subspace of a vector space over a field F. Then prove that
 v₁ + W = v₂ + W iff v₁ − v₂ ∈ W.
- Check whether the set {(1, -1, 2), (1, -2, 1), (1, 1, 4)} is linearly independent or not.

P.T.O.

K22U 0416

-2-

 Let S be a linearly independent subset of a vectorspace V. Then prove that there exist a maximal linearly independent subset of V that contains S.

11. If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that T(1, 1) = (1, 0, 2) and T(2, 3) = (1, -1, 4), then find T(8, 11).

- 12. Find the rank of A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing to row echelon form.
- Let V and W be vector spaces and T: V → W be linear. Show that the nullspace N(T) and range of T, R(T) are subspaces of V and W respectively.

14. If A is a square matrix with λ as an eigenvalue, then prove that λ^{-1} is an eigenvalue of A^{-1}

15. Find A⁻¹ using Cayley Hamilton Theorem for the matrix 1 4 2 3

16. For what value of k the following system of homogeneous equations have a non trivial solution : x + 2y - 3z = 0, 2x + y + z = 0 and x - y + kz = 0?

Answer any four questions. Each question carries four marks.

- Let V be a vector space. Then show that a subset W of V is a subspace of V if and only if the following conditions hold.
 - a) 0 ∈ W
 - b) $x + y \in W$
 - c) cx ∈ W.
- If W₁ and W₂ are subspaces of a vectorspace V, then prove that W₁ + W₂ is a subspace of V that contains both W₁ and W₂.
- 19. Determine whether the set $\{(-1, 3, 1), (2, -4, -3), (-3, 8, 2)\}$ is a basis for \mathbb{R}^3 .
- 20. Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (2a_1 a_2, 3a_1 + 4a_2, a_1)$ with respect to the standard ordered basis.
- 21. Reduce to normal form and find the rank of $\begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$

THE REPORT OF THE PART OF THE PART OF THE PART OF THE

K22U 0416

$$x + 3y + 3z = 1$$
$$2x + 6y + 9z = 5$$

$$-x - 3y + 3z = 5$$
.

Answer any two questions. Each question carries 6 marks.

- Show that the set of all m x n matrices with entries from a field F is a vector space over F.
- Define basis of a vectorspace with an example. Show that every vectorspace of finite dimension has the same number of vectors.
- 26. Find the inverse of $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ using elementary row operations.
- 27. Find the null space and range space of $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & -1 \end{pmatrix}$.