

Reg. No. :

Name :

VI Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, April 2023 (2017 to 2018 Admissions) CORE COURSE IN MATHEMATICS 6B13MAT : Mathematical Analysis and Topology

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions, each question carries 1 mark.

- 1. If P = {a = $x_0, x_1, x_2, ..., x_n = b$ } is a partition of [a, b], then the Riemann lower sum of a function f : [a, b] \rightarrow R, is _____
- 2. Give an example of a sequence of continuous functions such that the limit function is not continuous.
- 3. A subset A of a topological space X is said to be dense if _____
- 4. Define the boundary point of a set A in a metric space X.

SECTION - B

Answer any eight questions, each question carries 2 marks.

- 5. If g(x) = x on [0, 1] and $P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$ then find $\lim_{n \to \infty} (U(P_n, g) L(P_n, g))$.
- 6. If f is continuous on [a, b], a < b, show that there exist $c \in [a, b]$ such that we have $\int_{a}^{b} f = f(c)(b a)$.
- 7. Give an example for a bounded non-integrable function on [0, 1].
- 8. Define pointwise convergence and uniform convergence of a sequence of functions.

K23U 0230

K23U 0230

9. If f_n is continuous on D_CR and if $\sum f_n$ converges to f uniformly on D, prove that f is continuous on D.

10. Determine the radius of convergence of the power series $\sum \frac{n^n}{n!} x^n$.

11. Let X be a non-empty set and define d by

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Show that d is a metric on X.

- 12. Prove that in a metric space X, each open sphere is an open set.
- 13. Prove that \overline{A} equals the intersection of all closed supersets of A.
- 14. If T_1 and T_2 are 2 topologies on a non-empty set X, show that $T_1 \cap T_2$, is also a topology on X.

SECTION - C

Answer **any four** questions, **each** question carries **4** marks.

- 15. Show that if f : [a, b] \rightarrow R is continuous on [a, b], then f is integrable on [a, b].
- 16. State and prove Darboux's theorem.
- 17. State and prove the Cauchy Criterion for Uniform Convergence.
- 18. Prove that every non-empty open set on the real line is the union of a countable disjoint class of open intervals.
- 19. Show that in a metric space X,
 - a) any intersection of closed sets in X is closed.
 - b) any finite union of closed sets in X is closed.
- 20. Show that a subset of a topological space is closed if and only if it contains its boundary.

SECTION - D

Answer any two questions, each question carries 6 marks.

- 21. If $f \in R[a, b]$ and if f is continuous at a point $c \in [a, b]$, prove that the indefinite integral $F(x) = \int_{a}^{x} f$ for $x \in [a, b]$ is differentiable at c and F' (c) = f(c).
- 22. Prove that a sequence (f_n) of bounded functions on A \subseteq R converges uniformly on A to f if and only if $||f_n f||_A \rightarrow 0$.
- 23. State and prove Cantor's Intersection Theorem.
- 24. a) Let X and Y be topological spaces and f a mapping of X into Y. When do you say that f is :
 - i) continuous
 - ii) open
 - iii) a homeomorphism ?
 - b) Let X be a topological space, Y be a metric space, and A a subspace of X.
 If f is continuous mapping of A into Y, show that f can be extended in atmost one way to a continuous mapping of A into Y.

