K22U 0414 Reg. No. : Name : VI Semester B.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2022 (2019 Admission) CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis Time: 3 Hours Max. Marks: 48 ## PART - A Answer any four questions. Each question carries one mark. - 1. Find the real and imaginary parts of the function $f(z) = \frac{1}{z}$. - 2. Evaluate $\int_0^{1+1} z^2 dz$. - 3. State Morera's theorem. - 4. Write the Laurent series for $z^2e^{\frac{1}{2}}$. - 5. Find residue of $f(z) = \frac{\sin z}{z^4}$. ## PART - B Answer any eight questions. Each question carries two marks. - Solve cos z = 5. - 7. Find the Principal value of In(i). - 8. Evaluate $\int\! \text{Re}(z)\,\text{d}z$, where C : z(t)=t+2it, $(0\leq t\leq 1).$ - 9. Show that the fundamental region of e^z is $-\pi < y \le \pi$. - 10. Find an upperbound for the absolute value of $\int_{c}^{z^2} dz$. ## K22U 0414 - 11. State identity theorem for power series. - 12. Define absolute convergence and conditional convergence. - 13. Check the convergence of $\sum_{n=0}^{\infty} \frac{(100+75i)^n}{n!}$. - Show that sequence {z_n = x_n + iy_n} converges to c = a + ib if and only if {x_n}. converges to a and {y_n} converges to b. - 15. State Picard's theorem. 16. $$\int_{C} \frac{z^3 - 6}{2z - i} dz$$ where C is $|z| = \frac{3}{4}$. Answer any four questions. Each question carries four marks. - 17. Verify $u = x^2 y^2 y$ is harmonic and find the harmonic conjugate of u. - 18. Find (1 + i)²⁻ⁱ. - 19. State and prove Cauchy's inequality. - 20. State and prove Liouville's Theorem. - 21. Find radius of convergence of the following. a) $$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$$. b) $$\left[\left(-1 \right)^n + \frac{1}{2^n} \right] z^n$$. - 22. Find residue at poles of the function $f(z) = \frac{9z + i}{z^3 + z}$. - 23. Classify isolated singularities. Give suitable examples too. ## PART - D Answer any two questions. Each question carries six marks. - 24. a) State and prove necessary condition for differentiability. - b) If f is an analytic function with |f| constant, then show that f is constant. - 25. a) State Cauchy's Integral Formula. b) $$\int_{C} \frac{z^2 + 1}{z^2 - 1} dz$$, where C is $|z - 1| = 1$ c) $$\int_C \frac{\tan z}{z^2 - 1} dz$$, where C is $\left| z - \frac{\pi}{2} \right| = \frac{1}{4}$. - 26. a) Find Maclaurin's series for $f(z) = \frac{1}{(1+z)^2}$. - b) Find Taylor's series for $f(z) = \frac{2z^2 + 9z + 5}{z^3 + z^2 8z 12}$. - 27. a) State and prove Cauchy Residue Theorem. - b) Evaluate $\int_{C} \left(\frac{ze^{\pi z}}{z^4 16} + ze^{\frac{\pi}{z}} \right) dz$, where C is the ellipse $9x^2 + y^2 = 9$.