Reg. No. :
Name :

III Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp. Examination, November 2021 (2019 – 2020 Admission) CORE COURSE IN MATHEMATICS

3B03 MAT : Analytic Geometry and Applications of Derivatives

Time: 3 Hours Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- 1. Find the eccentricity of the ellipse $2x^2 + y^2 = 2$.
- Evaluate lim sin5x x / x / x.
- 3. Find the angle ϕ between the radius vector and the tangent at any point on the curve $r = a(1 \cos\theta)$.
- 4. Write the formula for finding the radius of curvature for a polar curve $r = f(\theta)$.
- Define asymptote of a curve.

PART - P

Answer any eight questions. Each question carries two marks.

- 6. Find the focus and directrix of the parabola $y^2 = -4x$.
- 7. Find the equation of ellipse with Foci : $(\pm \sqrt{2}, 0)$ Vertices : $(\pm 2, 0)$.
- 8. Find the critical points for the function $f(x) = 6x^2 x^3$.

- Evaluate lim sec x / (1+tanx)
- 10. Find the absolute maximum and minimum values of $f(x) = 4 x^2$, $-3 \le x \le 1$.
- 11. Determine the concavity of $y = 3 + \sin x$ on $[0, 2\pi]$.
- 12. Verify Rolle's Theorem for the function $y = e^x (\sin x \cos x)$ in $(\pi/4, 5\pi/4)$.
- 13. Find the asymptotes of the curve $x^2y^2 x^2y xy^2 + x + y + 1 = 0$.
- 14. Find ρ at the origin for the curve $y^4 + x^3 + a(x^2 + y^2) a^2y = 0$.
- 15. Find the polar subtangent of the cardioid $r = a(1 \cos\theta)$.
- 16. Show that the parabolas $y^2 = 4ax$ and $2x^2 = ay$ intersect at an angle of tan^{-1} (3/5).

Answer any four questions. Each question carries four marks.

- 17. Sketch the hyperbola $y^2 x^2 = 4$ including asymptotes and foci.
- 18. Find a Cartesian equation for the hyperbola centered at the origin that has a focus at (3, 0) and the line x = 1 as the corresponding directrix.
- A particle is moving along a horizontal coordinate line (positive to the right) with position function s(t) = 2t³ 14t² + 22t 5, t ≥ 0. Find the velocity and acceleration.
- 20. Prove that $\lim_{x\to 0^+} (1+x)^{1/x} = e$.
- 21. Find the equation of the tangent at any point (x, y) to the curve $x^{2/3} + y^{2/3} = a^{2/3}$. Show that the portion of the tangent intercepted between the axes is of constant length.
- 22. Find the angle of intersection of the curves : $r = \sin \theta + \cos \theta$, $r = 2 \sin \theta$.
- 23. Find the asymptotes of $r = a \tan \theta$.

K21U 1832

PART - D

Answer any two questions. Each question carries 6 marks.

- 24. Derive the polar equation of a conic with eccentricity e. Also find the directrix of the parabola $r = \frac{20}{10 + 10\cos\theta}$ 25. Evaluate the following:

a)
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
.

- b) Find the critical points of $f(x) = x^3 12x 5$ and identify the intervals on which f is increasing and on which f is decreasing.
- 26. Define Evolute. Show that the evolute of the cycloid $x = a(\theta \sin \theta)$,
- 27. Find the lengths of the tangent, normal, subtangent and subnormal for the