

K23U 0228

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – Supplementary) Examination, April 2023 (2017 to 2018 Admissions) CORE COURSE IN MATHEMATICS 6B11MAT : Numerical Methods and Partial Differential Equations

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions. Each question carries 1 mark.

- 1. Give Newton's forward difference interpolation polynomial.
- 2. Write down the two dimensional Laplace equation.
- 3. Find the order of the partial differential equation $\frac{\partial^3 u}{\partial x^3} + \left(\frac{\partial u}{\partial x}\right)^2 = 0$.
- 4. Show that $u = e^{-t} \sin x$ is a solution of the differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$.

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 5. Show that the smallest positive root of $x^3 3x 1 = 0$ lies in the interval (1, 2).
- 6. Using the method $f'(x_0) = \frac{1}{2h}[-3f_0 + 4f_1 f_2]$, obtain an approximate value of f'(-3) with h = 2, for the following data :

x −3 −2.5 −2 −1 1 **f(x)** −25 −14.125 −7 −1 −1

7. Evaluate $\int_{0}^{2} \frac{dx}{x^{2} + 2x + 10}$, using trapezoidal rule with n = 2.

K23U 0228

8. Construct the divided difference table for the following data :

x −3 −2 −1 **f(x)** −25 −7 −1

- 9. By performing two iterations of the bisection method, obtain the smallest positive root of the equation $x^3 5x + 1 = 0$.
- 10. Prove that $\Delta \left(\frac{1}{f_i} \right) = -\frac{\Delta f_i}{f_i f_{i+1}}$.
- 11. Explain the terms Quadratic rule and Error of approximation in numerical integration.
- 12. Solve the partial differential equation $y^2u_x x^2u_y = 0$, by separating variables method.
- 13. Verify that $u = x^2 + y^2$, f = 4 satisfies the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f$.
- 14. Find the solution of the initial value problem y' = x + y, y(0) = 1, by performing two iterations of Picard's method.

Answer **any four** questions. **Each** question carries **4** marks.

- 15. Find the approximate value of y(1.2) for the IVP $y' = -2xy^2$, y(1) = 2, using Taylor's second order method.
- 16. Find u(x, t) of the string of length π , c² = 1, initial velocity zero and initial deflection 0.1x ($\pi^2 x^2$).
- 17. Find the Lagrange interpolation polynomial that fits the following data values :

Χ	1	2	4
f(x)	1	7	61

- 18. Using Newton Raphson method, find the value of $18^{\frac{1}{3}}$ upto four decimal places taking suitable initial approximation.
- 19. Transform the equation $u_{xx} + 4u_{xy} + 4u_{yy} = 0$ into normal form and solve.
- 20. Evaluate $\sqrt{3}$ using the equation $x^2 3 = 0$ by applying the fixed point iteration method.

SECTION - D

Answer **any two** questions. **Each** question carries **6** marks.

- 21. Find the value of $\int_0^1 \frac{dx}{2+3x}$ using Simpson's rule with n = 2 and compare this value with the exact solution.
- 22. Find the solution of one dimensional heat equation by using Fourier series.
- 23. Solve the initial value problem, y' = x(y x), y(1) = 2 in the interval [1, 1.2] using the classical Runge-Kutta fourth order method with the step size h = 0.1.
- 24. The following table represents the function $f(x) = e^{-x}$.
 - **x** -1 -0.5 0 0.5 1
 - **f(x)** 2 0.75 1 2.75 6
 - i) Using Gauss forward central difference formula, compute f(0.25).
 - ii) Using Gauss backward central difference formula, compute f(-0.25).

