Reg. No. : \qquad
Name : \qquad

VI Semester B.Sc. Degree (CBCSS - Supplementary) Examination, April 2023 (2017 to 2018 Admissions) CORE COURSE IN MATHEMATICS 6B11MAT : Numerical Methods and Partial Differential Equations

Time : 3 Hours
Max. Marks : 48

SECTION - A

Answer all the questions. Each question carries 1 mark.

1. Give Newton's forward difference interpolation polynomial.
2. Write down the two dimensional Laplace equation.
3. Find the order of the partial differential equation $\frac{\partial^{3} u}{\partial \mathbf{x}^{3}}+\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^{2}=0$.
4. Show that $u=e^{-t} \sin x$ is a solution of the differential equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$.
SECTION - B

Answer any eight questions. Each question carries 2 marks.
5. Show that the smallest positive root of $x^{3}-3 x-1=0$ lies in the interval $(1,2)$.
6. Using the method $f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[-3 f_{0}+4 f_{1}-f_{2}\right]$, obtain an approximate value of $f^{\prime}(-3)$ with $h=2$, for the following data :

\mathbf{x}	-3	-2.5	-2	-1	1
$\mathbf{f}(\mathbf{x})$	-25	-14.125	-7	-1	-1

7. Evaluate $\int_{0}^{2} \frac{\mathrm{dx}}{\mathrm{x}^{2}+2 \mathrm{x}+10}$, using trapezoidal rule with $\mathrm{n}=2$.
8. Construct the divided difference table for the following data :

\mathbf{x}	-3	-2	-1
$\mathbf{f}(\mathbf{x})$	-25	-7	-1

9. By performing two iterations of the bisection method, obtain the smallest positive root of the equation $x^{3}-5 x+1=0$.
10. Prove that $\Delta\left(\frac{1}{f_{i}}\right)=-\frac{\Delta f_{i}}{f_{i} f_{i}+1}$.
11. Explain the terms Quadratic rule and Error of approximation in numerical integration.
12. Solve the partial differential equation $y^{2} u_{x}-x^{2} u_{y}=0$, by separating variables method.
13. Verify that $u=x^{2}+y^{2}, f=4$ satisfies the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f$.
14. Find the solution of the initial value problem $y^{\prime}=x+y, y(0)=1$, by performing two iterations of Picard's method.
SECTION - C

Answer any four questions. Each question carries 4 marks.
15. Find the approximate value of $y(1.2)$ for the IVP $y^{\prime}=-2 x y^{2}, y(1)=2$, using Taylor's second order method.
16. Find $u(x, t)$ of the string of length $\pi, c^{2}=1$, initial velocity zero and initial deflection $0.1 x\left(\pi^{2}-x^{2}\right)$.
17. Find the Lagrange interpolation polynomial that fits the following data values:

\mathbf{x}	1	2	4
$\mathbf{f}(\mathbf{x})$	1	7	61

18. Using Newton Raphson method, find the value of $18^{\frac{1}{3}}$ upto four decimal places taking suitable initial approximation.
19. Transform the equation $u_{x x}+4 u_{x y}+4 u_{y y}=0$ into normal form and solve.
20. Evaluate $\sqrt{3}$ using the equation $x^{2}-3=0$ by applying the fixed point iteration method.

SECTION - D

Answer any two questions. Each question carries 6 marks.
21. Find the value of $\int_{0}^{1} \frac{d x}{2+3 x}$ using Simpson's rule with $n=2$ and compare this value with the exact solution.
22. Find the solution of one dimensional heat equation by using Fourier series.
23. Solve the initial value problem, $y^{\prime}=x(y-x), y(1)=2$ in the interval $[1,1.2]$ using the classical Runge-Kutta fourth order method with the step size $\mathrm{h}=0.1$.
24. The following table represents the function $f(x)=e^{-x}$.

\mathbf{x}	-1	-0.5	0	0.5	1
$\mathbf{f}(\mathbf{x})$	2	0.75	1	2.75	6

i) Using Gauss forward central difference formula, compute $f(0.25)$.
ii) Using Gauss backward central difference formula, compute $f(-0.25)$.

