K23U 2369
Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2023
 (2019-2021 Admissions) CORE COURSE IN MATHEMATICS
 5B09MAT: Vector Calculus

Time : 3 Hours

Max. Marks : 48

PART - A

(Short Answer Questions)
Answer any four questions from this Part. Each question carries 1 mark.

1. Find the parametric equation for the line through $(3,-4,-1)$ parallel to the vector $\mathrm{v}=\mathrm{i}+\mathrm{j}+\mathrm{k}$.
2. Find the distance from the point $(2,-3,4)$ to the plane $x+2 y+2 z=13$.
3. Find the gradient of the function $f(x, y)=x y^{2}$ at the point $(2,-1)$.
4. Evaluate $\int_{C}(x+y) d s$, where C is the straight line segment $x=t, y=1-t, z=0$ from ($0,1,0$) to ($1,0,0$).
5. Define Divergence Theorem.

> PART - B
(Short Essay Questions)
Answer any eight questions from this Part. Each question carries 2 marks.
6. Find the length of the portion of the curve $r(t)=4 \operatorname{cost} i+4 \operatorname{sint} j+3 t k, 0 \leq t \leq \frac{\pi}{2}$.
7. Find the curvature of $r(t)=3 \operatorname{sint} i+3 \operatorname{cost} j+4 t k$.
8. Find the directions in which $f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}$ increases more rapidly at $(1,1)$.
9. Find the plane tangent to the surface $z=x \operatorname{cosy}-y e^{x}$ at $(0,0,0)$.
10. Find the work done by the force field $F=x i+y j+z k$ in moving an object along the curve C parametrized by $\mathrm{r}(\mathrm{t})=\cos (\pi \mathrm{t}) \mathrm{i}+\mathrm{t}^{2} \mathrm{j}+\sin (\pi \mathrm{t}) \mathrm{k}, 0 \leq \mathrm{t} \leq 1$.
11. Find the scalar potential of the vector field $F=2 x i+3 y j+4 z k$.
12. Find the Curl of $F=\left(x^{2}-z\right) i+x e^{z j}+x y k$.
13. Find the critical points of the function $f(x, y)=x^{2}+y^{2}-4 y+9$.
14. Find the Divergence of the vector field $F=\left(y^{2}-x^{2}\right) i+\left(x^{2}+y^{2}\right) j$.
15. Integrate $G(x, y, z)=x^{2}$ over the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.
16. Evaluate $\int_{C} y^{2} d x+x^{2} d y, C: x^{2}+y^{2}=4$.

PART - C
(Essay Questions)
Answer any four questions from this Part. Each question carries 4 marks.
$(4 \times 4=16)$
17. Find the angle between the planes $2 x+2 y+2 z=3,2 x-2 y-z=5$.
18. Find the unit tangent vector of the curve

$$
r(t)=\operatorname{sint} i+\left(3 t^{2}-\cos t\right) j+e^{t} k, \text { at } t_{0}=0 .
$$

19. Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $(1,1,0)$ in the direction of $v=2 i-3 j+6 k$.
20. Verify Green's theorem for $\mathrm{F}=-\mathrm{yi}+\mathrm{xj}$ over the circle $\mathrm{C}: \operatorname{acost} \mathrm{i}+\operatorname{asint} \mathrm{j}, 0 \leq \mathrm{t} \leq 2 \pi$.
21. Verify Divergence theorem for $F=x i+y j+z k$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
22. Find the linearization $L(x, y, z)$ of $f(x, y, z)=x^{2}-x y+3 \operatorname{sinz}$ at the point $(2,1,0)$.
23. Integrate $G(x, y, z)=x y z$ over the surface of the cube cut from the first octant by the planes $x=1, y=1, z=1$.

> PART - D

(Long Essay Questions)

Answer any two questions from this Part. Each question carries 6 marks. ($2 \times 6=12$)
24. Find the curvature and torsion of the curve
$r(t)=($ cost $+t \sin t) i+($ sint $-t \operatorname{cost}) j, t>0$.
25. Find the local extreme values of the function $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.
26. Show that $y d x+x d y+4 d z$ is exact and evaluate the integral
$\int y d x+x d y+4 d z$ over any path from $(1,1,1)$ to $(2,3,-1)$.
27. Find the center of mass of a thin hemispherical shell of radius a and constant density δ.

