

K23U 2829

Reg. No. :

Name :

V Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, November 2023 (2017 and 2018 Admissions) CORE COURSE IN MATHEMATICS 5B09 MAT : Graph Theory

Time : 3 Hours

Max. Marks: 48

PART – A (Short Answer)

Answer all questions from this Part. Each question carries 1 mark. (4×1=4)

- 1. Define graph isomorphism.
- 2. Define normal product of two graphs and find $n(G_1 \circ G_2)$.
- 3. State Whitney's theorem on 2-connected graphs.
- 4. Give an example of a graph with n vertices and n 1 edges that is not a tree.

PART – B (Short Essay)

Answer any eight questions from this Part. Each question carries 2 marks. (8×2=16)

- 5. State and prove the first theorem of graph theory.
- Let (d₁, d₂, ..., d_n) be the degree sequence of a graph and r be any positive integer. Show that ∑ⁿ_{i=1}d^r_i is even.
- 7. Prove that the line graph of a simple graph G is a path if and only if G is a path.
- 8. Prove that a vertex v of a connected graph with at least three vertices is a cut vertex of G if and only if there exist vertices u and w of G, distinct from v, such that v is in every u w path in G.
- 9. Disprove by a counter example : If k(G) = k, then (L(G)) = k.
- 10. Prove that a simple graph is a tree if and only if any two distinct vertices are connected by a unique path.
- 11. If $\delta(G) \ge 2$, then prove that G contains a cycle.

K23U 2829

12. Prove that a subset S of V is independent if and only if V - S is a covering of G.

- 13. For any graph G with $\delta > 0$, prove that $\alpha \leq \beta'$ and $\alpha' \leq \beta$.
- 14. Explain directed graph with an example.

PART – C (Essay)

Answer **any four** questions from this Part. **Each** question carries **4** marks. (4×4=16)

- 15. If G is simple and $\delta \ge \frac{n-1}{2}$, then prove that G is connected. Give an example of a non-simple disconnected graph with $\delta \ge \frac{n-1}{2}$.
- 16. Prove that a connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
- 17. Prove that for a simple connected graph G, L(G) is isomorphic to G if and only if G is a cycle.
- 18. For any graph G for which $\delta > 0$, prove that $\alpha' + \beta' = n$.
- 19. If G is Hamiltonian, then prove that for every nonempty proper subset S of V, $\omega(G S) \leq |S|$.
- 20. Show that every tournament T is disconnected or can be made into one by the reorientation of just one arc of T.

PART – D (Long Essay)

Answer any two questions from this Part. Each question carries 6 marks. (2×6=12)

- 21. a) Prove that a simple non-trivial graph G is connected if and only if for any partition of V into two non-empty subsets V_1 and V_2 , there is an edge joining a vertex of V_1 to a vertex of V_2 .
 - b) Prove that in a connected graph G with at least three vertices, any two longest paths have a vertex in common.
- 22. For any loopless connected graph G, prove that $k(G) \le \lambda(G) \le \delta(G)$.
- 23. For a connected graph G, prove that G is Eulerian if and only if the degree of each vertex of G is an even positive integer.
- 24. Prove that every tournament contains a directed Hamiltonian path.

#