Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (C.B.C.S.S. - Supplementary)
 Examination, November 2023
 (2017 and 2018 Admissions) CORE COURSE IN MATHEMATICS
 5B09 MAT : Graph Theory

Time : 3 Hours
Max. Marks : 48
PART - A
(Short Answer)
Answer all questions from this Part. Each question carries 1 mark.
$(4 \times 1=4)$

1. Define graph isomorphism.
2. Define normal product of two graphs and find $n\left(G_{1} \circ G_{2}\right)$.
3. State Whitney's theorem on 2-connected graphs.
4. Give an example of a graph with n vertices and $n-1$ edges that is not a tree.

PART - B
(Short Essay)
Answer any eight questions from this Part. Each question carries 2 marks.
5. State and prove the first theorem of graph theory.
6. Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of a graph and r be any positive integer. Show that $\sum_{i=1}^{n} \mathrm{~d}_{\mathrm{i}}^{r}$ is even.
7. Prove that the line graph of a simple graph G is a path if and only if G is a path.
8. Prove that a vertex v of a connected graph with at least three vertices is a cut vertex of G if and only if there exist vertices u and w of G, distinct from v, such that v is in every $u-w$ path in G.
9. Disprove by a counter example: If $k(G)=k$, then $(L(G))=k$.
10. Prove that a simple graph is a tree if and only if any two distinct vertices are connected by a unique path.
11. If $\delta(G) \geq 2$, then prove that G contains a cycle.
12. Prove that a subset S of V is independent if and only if $\mathrm{V}-\mathrm{S}$ is a covering of G .
13. For any graph G with $\delta>0$, prove that $\alpha \leq \beta^{\prime}$ and $\alpha^{\prime} \leq \beta$.
14. Explain directed graph with an example.

Answer any four questions from this Part. Each question carries 4 marks.
15. If G is simple and $\delta \geq \frac{\mathrm{n}-1}{2}$, then prove that G is connected. Give an example of a non-simple disconnected graph with $\delta \geq \frac{n-1}{2}$.
16. Prove that a connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
17. Prove that for a simple connected graph $G, L(G)$ is isomorphic to G if and only if G is a cycle.
18. For any graph G for which $\delta>0$, prove that $\alpha^{\prime}+\beta^{\prime}=\mathrm{n}$.
19. If G is Hamiltonian, then prove that for every nonempty proper subset S of V , $\omega(\mathrm{G}-\mathrm{S}) \leq|\mathrm{S}|$.
20. Show that every tournament T is disconnected or can be made into one by the reorientation of just one arc of T .

> PART - D
(Long Essay)
Answer any two questions from this Part. Each question carries 6 marks.
21. a) Prove that a simple non-trivial graph G is connected if and only if for any partition of V into two non-empty subsets V_{1} and V_{2}, there is an edge joining a vertex of V_{1} to a vertex of V_{2}.
b) Prove that in a connected graph G with at least three vertices, any two longest paths have a vertex in common.
22. For any loopless connected graph G , prove that $\mathrm{k}(\mathrm{G}) \leq \lambda(\mathrm{G}) \leq \delta(\mathrm{G})$.
23. For a connected graph G, prove that G is Eulerian if and only if the degree of each vertex of G is an even positive integer.
24. Prove that every tournament contains a directed Hamiltonian path.

