K23U 2367
Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Regular/Supplementary/ Improvement) Examination, November 2023 (2019-2021 Admissions) CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time : 3 Hours

Answer any 4 questions from this Part. Each question carries 1 mark :

1. Give an example of a finite group that is not cyclic.
2. Find the order of the element 4 in Z_{6}.
3. What is the order of the permutation (124) (23) in S_{6} ?
4. Define Kernel of a homomorphism.
5. Find all solutions of the equation $x^{2}+2 x+2=0$ in Z_{6}.

PART - B

Answer any 8 questions from this Part. Each question carries 2 marks :
6. Find the group table of the Klein 4-group. List all its subgroups.
7. Show that every cyclic group is abelian. Discuss its converse.
8. Let S be the set of all real numbers except - 1. Define * on S by $a+b=a+b+a b$. Check whether $(S, *)$ is a group or not.
9. Find all the generators of Z_{18}.
10. Find the number of elements in the set $\left\{\sigma \in \mathrm{S}_{5} \mid \sigma(2)=5\right\}$.
11. Define odd permutation. Give an example of an odd permutation in S_{4}.
12. Prove that a group homomorphism ϕ defined on G is one-to-one if and only if $\operatorname{ker}(\phi)=\{e\}$.
13. Consider $\gamma: Z \rightarrow Z_{n}$ by $\gamma(m)=r$, where r is the remainder when m divided by n. Show that γ is a group homomorphism. What is its kernel?
14. Show that the cancellation law with respect to multiplication hold in a ring R if and only if R has no divisors of zero.
15. Show that every field is an integral domain. Discuss its converse.
16. Define characteristic of a ring. What is the characteristic of the ring Z_{6} ?

PART - C

Answer any 4 questions from this Part. Each question carries 4 marks :
17. Let G be a group and let a be one fixed element of G. Show that the set $H_{a}=\{x \in G \mid x a=a x\}$ is a subgroup of G.
18. Show that every permutation of a finite set can be written as a product of disjoint cycles.
19. Let G be a group of order pq , where p and q are prime numbers. Show that every proper subgroup of $Z_{p q}$ is cyclic.
20. Let H be a subgroup of a group G such that $\mathrm{ghg}^{-1} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$ and all $h \in H$. Show that $g H=H g$.
21. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel H and let $a \in G$. Show that $\{\mathrm{x} \in \mathrm{G} \mid \phi(\mathrm{x})=\phi(\mathrm{a})\}=\mathrm{aH}$.
22. Show that the map $\phi: Z \rightarrow Z_{n}$ where $\phi(a)$ is the remainder of a modulo n is a ring homomorphism.
23. An element a of a ring R is idempotent of $a^{2}=a$. Show that a division ring contains exactly two idempotent elements.

> PART - D

Answer any 2 questions from this Part. Each question carries 6 marks :
24. State and prove Cayley's theorem.
25. Let H be a subgroup of a group G . Then show that the left coset multiplication $(\mathrm{aH})(\mathrm{bH})=\mathrm{abH}$ is well-defined if and only if H is a normal subgroup of G .
26. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
27. Show that the characteristic of an integral domain must be 0 or a prime number. Give examples of two non-isomorphic rings with characteristic 4.

