Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Regular/Supplementary/ Improvement) Examination, November 2023
 (2019-2021 Admissions) CORE COURSE IN MATHEMATICS
 5B05 MAT : Set Theory, Theory of Equations and Complex Numbers

Time : 3 Hours

Max. Marks : 48

PART - A

Answer any 4 questions from this part. Each question carries 1 mark.
($4 \times 1=4$)

1. Give example for a denumerable set.
2. If α, β, γ are the root of the equation $f(x)=0$, then the equation whose roots are $-\alpha,-\beta,-\gamma$ is \qquad
3. Show that $x^{5}-2 x^{2}+7=0$ has atleast two imaginary roots.
4. If ω is an imaginary cube root of unity, then the value of $1+\omega+\omega^{2}$ is \qquad
5. What is the value of $\operatorname{Arg} z$ for positive real axis, $z=x$?

PART - B

Answer any 8 questions from this part. Each question carries 2 marks.
($8 \times 2=16$)
6. Show that the set of all integers is countable.
7. If α, β, γ are the root of the equation $a x^{3}+b x^{2}+c x+d=0$, then find the values of $\alpha+\beta+\gamma$ and $\alpha \beta \gamma$.
8. Find the condition that the cubic equation $x^{3}-l x^{2}+m x-n=0$ should have its roots in arithmetical progression.
9. If α, β, γ are the root of the equation $8 x^{3}-4 x^{2}+6 x-1=0$, find the equation whose roots are $2 \alpha+1,2 \beta+1,2 \gamma+1$.
10. State De Gua's rule.
11. What do you mean by reciprocal equation? Give an example.
12. Describe the discriminant of the cubic equation $a x^{3}+3 b x^{2}+3 c x+d=0$.
13. Transform $x^{3}-6 x^{2}+5 x+12=0$ into an equation lacking the second term.
14. If a, b, c are the roots of the cubic equation $x^{3}+p x^{2}+q x+r=0$, find the value of $\frac{1}{a^{2} b^{2}}+\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}$.
15. What are the imaginary cube root of unity ?
16. Find the polar form of $z=1+i$.

PART - C

Answer any 4 questions from this part. Each question carries 4 marks.
$(4 \times 4=16)$
17. If A is a set with m elements and B is a set with n elements and if $A \cap B=\phi$, then prove that $A \cup B$ has $m+n$ elements.
18. Solve the equation $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$, given that the sum of the two of its roots is zero.
19. Find the rational roots of $x^{4}-39 x^{2}+46 x-168=0$.
20. Solve $6 x^{5}+11 x^{4}-33 x^{2}+11 x+6=0$.
21. Describe the behaviour of roots of a cubic equation in terms of its discriminant.
22. Find the value of $\sqrt{1+i}$.
23. Find the fifth root of (-1).

PART - D

Answer any 2 questions from this part. Each question carries 6 marks.
24. State and prove Cantor's theorem.
25. If α, β, γ are the root of the equation $a x^{3}+3 b x^{2}+3 c x+d=0$, then find the values of
a) $\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)\left(\gamma^{2}+1\right)$
b) $(\beta-\gamma)(\gamma-\alpha)+(\gamma-\alpha)(\alpha-\beta)+(\alpha-\beta)(\beta-\gamma)$.
26. Find a real root of the $x^{3}+x^{2}-16 x+20=0$.
27. If z_{1} and z_{2} are two complex numbers, prove that
a) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
b) $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$.

