

Reg. No.:....

Name:

V Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, November 2023 (2017 and 2018 Admissions) CORE COURSE IN MATHEMATICS 5B05 MAT: Real Analysis

Time: 3 Hours Max. Marks: 48

SECTION - A

Answer all the questions, each question carries one mark.

- 1. If $S = \left\{ \frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N} \right\}$, find inf S and sup S.
- 2. Give an example of two divergent sequences X and Y such that their sum X + Y converges.
- 3. State comparison test.
- 4. State Bernstein's approximation theorem.

 $(4 \times 1 = 4)$

SECTION - B

Answer any eight questions, each question carries two marks.

- 5. Prove that there does not exist a rational number r such that $r^2 = 2$.
- 6. Solve the inequality $|2x 1| \le x + 1$.
- 7. State and prove triangle inequality.

- 8. Use the definition of the limit of a sequence to establish that $\lim \frac{3n+2}{n+1} = 3$.
- 9. Let $X = (x_n)$ and $Y = (y_n)$ be sequence of real numbers converge to x and y respectively. Prove that the sequence XY converges to xy.
- 10. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2 n + 1}$ is convergent.
- 11. Prove that every absolutely convergent series is convergent.
- 12. State and prove Dirichlet's test.
- 13. State and prove Bolzano's intermediate value theorem.
- 14. Define Lipschitz function. If $f: A \to \mathbb{R}$ is a Lipschitz function, prove that f is uniformly continuous on A. (8×2=16)

SECTION - C

Answer any four questions, each question carries four marks.

- 15. State and prove Archimedean property.
- 16. State and prove density theorem.
- 17. State and prove Cauchy convergence criterion.
- 18. State and prove limit comparison test.
- 19. Let (z_n) be a decreasing sequence of strictly positive numbers with $\lim(z_n) = 0$. Prove that the alternating series $\sum (-1)^{n+1}z_n$ is convergent.
- 20. Let $I \subseteq \mathbb{R}$ be an interval and let if $f: I \to \mathbb{R}$ be monotone on I. Prove that the set of points $D \subseteq I$ at which f is discontinuous is a countable set. (4×4=16)

SECTION - D

Answer any two questions, each question carries six marks.

- 21. a) State and prove nested interval property.
 - b) Prove that the set \mathbb{R} of real numbers is not countable.
- 22. a) State monotone convergence theorem.
 - b) Let $s_1 > 0$ be arbitrary and define $s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right)$ for $n \in \mathbb{N}$. Prove that (s_n) converges to \sqrt{a} .
- 23. Discuss the convergence of the following series:
 - a) $\sum_{n=1}^{\infty} \frac{1}{n!}$
 - b) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$.
- 24. State and prove location of roots theorem.

 $(2 \times 6 = 12)$

