K23U 2825
Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (C.B.C.S.S. - Supplementary) Examination, November 2023
 (2017 and 2018 Admissions) CORE COURSE IN MATHEMATICS
 5B05 MAT : Real Analysis

Time : 3 Hours
Max. Marks : 48

SECTION - A
Answer all the questions, each question carries one mark.

1. If $S=\left\{\frac{1}{n}-\frac{1}{m}: n, m \in \mathbb{N}\right\}$, find inf S and sup S.
2. Give an example of two divergent sequences X and Y such that their sum $X+Y$ converges.
3. State comparison test.
4. State Bernstein's approximation theorem.

SECTION - B

Answer any eight questions, each question carries two marks.
5. Prove that there does not exist a rational number r such that $r^{2}=2$.
6. Solve the inequality $|2 x-1| \leq x+1$.
7. State and prove triangle inequality.
8. Use the definition of the limit of a sequence to establish that $\lim \frac{3 n+2}{n+1}=3$.
9. Let $X=\left(x_{n}\right)$ and $Y=\left(y_{n}\right)$ be sequence of real numbers converge to x and y respectively. Prove that the sequence XY converges to xy .
10. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{2}-n+1}$ is convergent.
11. Prove that every absolutely convergent series is convergent.
12. State and prove Dirichlet's test.
13. State and prove Bolzano's intermediate value theorem.
14. Define Lipschitz function. If $f: A \rightarrow \mathbb{R}$ is a Lipschitz function, prove that f is uniformly continuous on A.
SECTION - C

Answer any four questions, each question carries four marks.
15. State and prove Archimedean property.
16. State and prove density theorem.
17. State and prove Cauchy convergence criterion.
18. State and prove limit comparison test.
19. Let $\left(z_{n}\right)$ be a decreasing sequence of strictly positive numbers with $\lim \left(z_{n}\right)=0$. Prove that the alternating series $\sum(-1)^{n+1} z_{n}$ is convergent.
20. Let $\mathrm{I} \subseteq \mathbb{R}$ be an interval and let if $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ be monotone on I . Prove that the set of points $\mathrm{D} \subseteq l$ at which f is discontinuous is a countable set.

SECTION - D

Answer any two questions, each question carries six marks.
21. a) State and prove nested interval property.
b) Prove that the set \mathbb{R} of real numbers is not countable.
22. a) State monotone convergence theorem.
b) Let $\mathrm{s}_{1}>0$ be arbitrary and define $\mathrm{s}_{n+1}=\frac{1}{2}\left(\mathrm{~s}_{\mathrm{n}}+\frac{\mathrm{a}}{\mathrm{s}_{\mathrm{n}}}\right)$ for $\mathrm{n} \in \mathbb{N}$. Prove that $\left(s_{n}\right)$ converges to \sqrt{a}.
23. Discuss the convergence of the following series:
a) $\sum_{n=1}^{\infty} \frac{1}{n!}$,
b) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$.
24. State and prove location of roots theorem.

