Reg. No. : \qquad
Name : \qquad
IV Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023
(2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT-CS : Mathematics for Computer Science - IV
Time : 3 Hours
Max. Marks : 40

PART - A

Answer any four questions. Each question carries 1 mark.

1. Define a graph.
2. Draw a connected regular graph with 4 vertices.
3. What is meant by a feasible solution of an LPP ?
4. What is a Transportation problem?
5. What is meant by a boundary value problem?
```
PART - B
```

Answer any 7 questions. Each question carries 2 marks.
6. Define graph isomorphism.
7. Which simple graphs have diameter 1 ? Justify.
8. Draw the Peterson graph. Find a path of length 9 in the Peterson graph.
9. Find the radius and diameter of the wheel graph W_{n}.
10. What are the three components of an LPP ?
11. Write the standard form of the LPP

Max. $Z=3 x_{1}+3 x_{2}+5 x_{3}$
Sub. to $x_{1}+2 x_{2}+3 x_{3} \geq 5$

$$
\begin{aligned}
& 2 x_{1}-3 x_{2} \leq 3 \\
& x_{1}+2 x_{3} \leq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

12. Explain degeneracy in a transportation problem.
13. Explain Loops in a transportation problem. Give an example.
14. Explain Simpson's $\frac{1}{3}$ rd Rule.
15. Evaluate $\int_{0}^{\pi} \mathrm{t}$ sint dt using Trapezoidal rule.

> PART - C

Answer any 4 questions. Each question carries 3 marks.
16. Let G be a non-empty graph with atleast two vertices. Then prove that G is bipartite if G has no odd cycle.
17. Let G be a graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and let A denote the adjacency matrix of G with respect to this listing of the vertices. Let k be any positive integer and let A^{k} denote the matrix multiplication of k copies of A. Then prove that the $(i, j)^{\text {th }}$ entry of A^{k} is the number of different $v_{i}-v_{j}$ walks in G of length k.
18. Explain the characteristics of canonical form of an LPP.
19. What are the major steps involves in the solution to a transportation problem?
20. Obtain an initial basic feasible solution to the following transportation problem using the north-west corner rule :

	D	E	F	G	Available
\mathbf{A}	11	13	17	14	250
B	16	18	14	10	300
C	21	24	13	10	400
Requirement	200	225	275	250	

21. From the Taylor series for $y(x)$, find $y(0.1)$ correct to four decimal places if $y(x)$ satisfies $y^{\prime}=x-y^{2}$ and $y(0)=1$.
22. Use Euler's method to find $y(0.04)$, given the differential equation $y^{\prime}=-y$ with the condition that $\mathrm{y}(0)=1$.
PART - D

Answer any 2 questions. Each question carries 5 marks.
23. Use simplex method to solve the LPP

Maximize $Z=4 x_{1}+10 x_{2}$
Sub. to $2 x_{1}+x_{2} \leq 50$

$$
\begin{aligned}
& 2 x_{1}+5 x_{2} \leq 100 \\
& 2 x_{1}+3 x_{2} \leq 90 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

24. Use graphical method to solve that LPP

Maximize $Z=2 x_{1}+3 x_{2}$
Sub. to $x_{1}+x_{2} \leq 30$
$x_{1}-x_{2} \geq 0$
$x_{2} \geq 3$
$0 \leq x_{1} \leq 20$
$0 \leq x_{2} \leq 12$.
25. Find the starting solution in the following transportation problem by Vogel's Approximation Method. Also obtain the optimum solution :

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
$\mathbf{S}_{\mathbf{1}}$	3	7	6	4	5
$\mathbf{S}_{\mathbf{2}}$	2	4	3	2	2
$\mathbf{S}_{\mathbf{3}}$	4	3	8	5	3
Demand	3	3	2	2	

26. Using Runge-Kutta method of both second order and fourth order formula, find $y(0.1)$ and $y(0.2)$ correct to four decimal places, given $\frac{d y}{d x}=y-x$ where $y(0)=2$, $\mathrm{h}=0.1$.
