

Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2023 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT-CS : Mathematics for Computer Science – IV

PART – A

Time : 3 Hours

Answer any four questions. Each question carries 1 mark.

- 1. Define a graph.
- 2. Draw a connected regular graph with 4 vertices.
- 3. What is meant by a feasible solution of an LPP ?
- 4. What is a Transportation problem ?
- 5. What is meant by a boundary value problem ?

PART – B

Answer **any 7** questions. **Each** question carries **2** marks.

- 6. Define graph isomorphism.
- 7. Which simple graphs have diameter 1 ? Justify.
- 8. Draw the Peterson graph. Find a path of length 9 in the Peterson graph.
- 9. Find the radius and diameter of the wheel graph W_n .
- 10. What are the three components of an LPP ?

K23U 1131

(7×2=14)

Max. Marks : 40

 $(4 \times 1 = 4)$

K23U 1131

11. Write the standard form of the LPP

Max. $Z = 3x_1 + 3x_2 + 5x_3$ Sub. to $x_1 + 2x_2 + 3x_3 \ge 5$ $2x_1 - 3x_2 \le 3$ $x_1 + 2x_3 \le 2$ $x_1, x_2, x_3 \ge 0.$

- 12. Explain degeneracy in a transportation problem.
- 13. Explain Loops in a transportation problem. Give an example.
- 14. Explain Simpson's $\frac{1}{3}$ rd Rule.
- 15. Evaluate $\int_0^{\pi} t$ sint dt using Trapezoidal rule.

PART – C

Answer **any 4** questions. **Each** question carries **3** marks.

(4×3=12)

- 16. Let G be a non-empty graph with atleast two vertices. Then prove that G is bipartite if G has no odd cycle.
- 17. Let G be a graph with n vertices v₁, v₂, ..., v_n and let A denote the adjacency matrix of G with respect to this listing of the vertices. Let k be any positive integer and let A^k denote the matrix multiplication of k copies of A. Then prove that the (i, j)th entry of A^k is the number of different v_i v_i walks in G of length k.
- 18. Explain the characteristics of canonical form of an LPP.
- 19. What are the major steps involves in the solution to a transportation problem ?
- 20. Obtain an initial basic feasible solution to the following transportation problem using the north-west corner rule :

	D	Е	F	G	Available
Α	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Requirement	200	225	275	250	

- K23U 1131
- 21. From the Taylor series for y(x), find y(0.1) correct to four decimal places if y(x) satisfies $y' = x y^2$ and y(0) = 1.
- 22. Use Euler's method to find y(0.04), given the differential equation y' = -y with the condition that y(0) = 1.

PART – D

Answer **any 2** questions. **Each** question carries **5** marks.

 $(2 \times 5 = 10)$

- 23. Use simplex method to solve the LPP Maximize $Z = 4x_1 + 10x_2$ Sub. to $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0.$
- 24. Use graphical method to solve that LPP

Maximize $Z = 2x_1 + 3x_2$ Sub. to $x_1 + x_2 \le 30$ $x_1 - x_2 \ge 0$ $x_2 \ge 3$ $0 \le x_1 \le 20$ $0 \le x_2 \le 12$.

25. Find the starting solution in the following transportation problem by Vogel's Approximation Method. Also obtain the optimum solution :

	D ₁	D ₂	D ₃	D_4	Supply
S ₁	3	7	6	4	5
S ₂	2	4	3	2	2
S ₃	4	3	8	5	3
Demand	3	3	2	2	-

26. Using Runge-Kutta method of both second order and fourth order formula, find y(0.1) and y(0.2) correct to four decimal places, given $\frac{dy}{dx} = y - x$ where y(0) = 2, h = 0.1.

-3-