Reg. No. : $\qquad$
Name : $\qquad$
IV Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023
(2019 Admission Onwards) CORE COURSE IN MATHEMATICS

## 4B04 MAT : Number Theory and Applications of Integrals

Time : 3 Hours
Max. Marks : 48

## PART - A

Answer any four out of five questions. Each question carries 1 mark.

1. Define a prime number.
2. State Euclidian Iemma.
3. When we can say that the existence of solution Diophantine equation of the form $a x+b y=c$ ?
4. State Wilson's theorem.
5. Show that for any integers $a, n, a \equiv a(\operatorname{modn})$.

PART-B
(Short Essay Type)
Answer any eight out of eleven questions. Each question carries $\mathbf{2}$ marks.
6. If $\mathrm{a} \mid \mathrm{b}$, then show that $\mathrm{a} \mid \mathrm{bc}$, for any integer c .
7. Find $\operatorname{gcd}(24,138)$ using Euclidian algorithm.
8. Show that, if $p$ is a prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
9. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$, prove that $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=\operatorname{gcd}(\mathrm{b}, \mathrm{n})$.
10. State Fermat's little theorem.
11. Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$.
12. Find the area of the region bounded above by $y=x+6$ bounded below by $y=x^{2}$, and bounded on the sides by the lines $x=0$ and $x=2$.
13. Define volume problem.
14. Find the volume of the solid that is obtained when the region under the curve $y=\sqrt{x}$, over the interval $[1,4]$ is revolved about $x$-axis.
15. Find the arc length of the spiral $r=e^{\theta}$ between $\theta=0$ and $\theta=2+\pi$.
16. Find the area of the surface generated by $y=7 x, 0 \leq x \leq 1$, revolving about $x$-axis.
( $8 \times 2=16$ )
PART-C

## (Essay Type)

Answer any four out of seven questions. Each question carries 4 marks.
17. Solve the Diophantine equation $172 x+20 y=1000$.
18. Express 6 as a linear combination of 12378 and 3054.
19. Find $2^{340}(\bmod 341)$.
20. Find the area of the region enclosed by $x=y^{2}$ and $y=x-2$.
21. Find the area of the region enclosed by the rose curve $r=\cos 2 \theta$.
22. Find the arc length of the curve $y=x^{\frac{3}{2}}$, from $(1,1)$ to $(2,2 \sqrt{2})$.
23. Find the area of the surface that is generated by revolving the portion of the curve $y=x^{3}$ between $x=0$ and $x=1$ about the $x$-axis.

## PART - D <br> (Long Essay Type)

Answer any two out of four questions. Each question carries 6 marks.
24. Let $x_{0}, y_{0}$ is any particular solution of the Diophantine equation of the form $a x+b y=c$, then show that all other solutions can be represented by $x=x_{0}+\left(\frac{b}{d}\right) t, y=y_{0}+\left(\frac{a}{d}\right) t$, where $d=\operatorname{gcd}(a, b)$.
25. Use Euler's theorem, evaluate $2^{100000}(\bmod 77)$.
26. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, using integration.
27. Find the volume of the solid generated when the region under $y=x^{2}$ over the interval $[0,2]$ is revolved about the line $y=-1$.

