K23U 2009
Reg. No. : \qquad
Name: \qquad

II Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023
 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN STATISTICS 2C02STA : Probability Theory and Random Variables

Time : 3 Hours
Max. Marks : 40
Instruction : Use of calculators and statistical tables are permitted.
PART - A

Short Answer. Answer all 6 questions.

1. What is a sigma field?
2. What are the characteristics of random experiment as compared to deterministic experiment?
3. State multiplication theorem.
4. If A and B are two events what can you say about independence of A^{C} and B ? Justify.
5. Give the applications of Bayes' theorem.
6. Give the domain and co-domain of a distribution function.
PART - B

Short Essay. Answer any 6 questions.
7. Explain mutually exclusive and exhaustive events.
8. An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability that they are one red ball and one blue ball.
9. Define independence of three events.
10. A pair of fair dice is thrown. What is the probability that the sum of faces shown is 8 or more, if 4 appears on the first die ?
11. A continuous random variable had pdf given by $f(x)=2 x, 0<x<1$ and 0 , elsewhere. Obtain its distribution function and hence find out $P(0.25<X<0.75)$.
12. What are the properties of probability mass function?
13. A random variable X takes values $0,1,2$ and 3 with respective probabilities $0.1,0.3,0.5$ and 0.1 . Obtain the pmf of $Y=X^{2}+2 X$ and find its mean.
14. How do you define conditional distribution for continuous type bivariate random variable (X, Y) ?

> PART-C

Essay. Answer any 4 questions.
15. Give axiomatic definition of probability, with clearly mentioning the terms involved.
16. Two persons throw a die alternately till one of them gets a ' 3 ' and wins the game. Find their respective probabilities of winning the game.
17. Using axiomatic approach prove that $P\left(A^{C}\right)=1-P(A)$.
18. What do you mean by total probability rule ?
19. Write down the properties of a distribution function of a continuous type random variable.
20. A gun is aimed at a certain point, say origin of the coordinate system. Because of the random factors, the actual hit point can be any point (X, Y) in a circle of radius R about the origin. Assume that the joint density function of X and Y is constant in this circle, say $f(x)=\left\{\begin{array}{ll}k, & x^{2}+y^{2} \leq R^{2} \\ 0, & \text { otherwise }\end{array}\right.$,
find the value of k.

PART - D
Long Essay. Answer any 2 questions.
21. State and prove Boole's inequalities.
22. Describe mutual independence of n event. Show that pair wise independence may not lead to mutual independence.
23. A random variable has pdf given by $f(x)=\frac{3}{4} x(2-x), 0<x<2$. Find its
i) mean
ii) variance
iii) moment measure of skewness and
iv) mean deviation about mean.
24. The joint density function of X and Y is given by $f(x, y)=\left\{\begin{array}{ll}2, & 0<x<1,0<y<x \\ 0, & \text { otherwise }\end{array}\right.$. Obtain the marginal densities and find the conditional density of Y given X .

