Reg. No. : $\qquad$
Name : $\qquad$

# II Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023 <br> (2019 Admission Onwards) <br> CORE COURSE IN MATHEMATICS <br> 2B02 MAT : Integral Calculus and Logic 

Time : 3 Hours
Max. Marks : 48

## SECTION - A

Short Answer Questions. Answer any 4.

1. Find the value of $\int_{0}^{\pi / 2} \cos ^{7} x d x$.
2. Find a polar equation for the circle $(x-2)^{2}+y^{2}=4$.
3. What is Tautology ?
4. Write the principle of double negation.
5. Write the contrapositive of the implication "If I am in Chicago, then I am in Illinois".

## SECTION - B

Short Essay Questions. Answer any 8.
6. Show that $\sinh 2 x=2 \sinh x \cosh x$.
7. Evaluate $\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{3 / 2} d x$.
8. Evaluate $\int \operatorname{cosec}^{5} x d x$.
9. Calculate $\iint_{R} f(x, y) d A$ for $f(x, y)=100-6 x^{2} y$ and $R: 0 \leq x \leq 2,-1 \leq y \leq 1$.
10. Graph the sets of points whose polar coordinates satisfy the conditions $1 \leq r \leq 2$ and $0 \leq \theta \leq \frac{\pi}{2}$.
11. Write the equations relating spherical coordinates to Cartesian and cylindrical co-ordinates.
12. Find the Jacobian for the polar coordinate transformation $x=r \cos \theta$, $y=r \sin \theta$.
13. Find the minimum number of intervals required to evaluate $\int_{0}^{1} \ln (1+x) d x$ using Simpson's $1 / 3$ rule with an accuracy of $10^{-6}$.
14. Evaluate $\int_{0}^{2} \frac{\mathrm{dx}}{\mathrm{x}^{2}+2 \mathrm{x}+10}$ using Simpson's rule with $\mathrm{n}=2$.
15. Find the truth set $T_{p}$ of the propositional function $p(x)$ given by " $x+5>1$ ", defined on the $P=\{1,2,3, \ldots\}$.
16. Negate the statement "All students live in dormitories".
SECTION - C

## Essay Questions. Answer any 4.

17. Evaluate $\int_{0}^{\ln 2} 4 \mathrm{e}^{\mathrm{x}} \sinh \mathrm{xdx}$.
18. Derive the reduction formula for $\int \sin ^{n} x d x$
19. Find the area enclosed by the lemniscate $r^{2}=4 \cos 2 \theta$
20. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$.
21. Use truth table to show that $\neg(p \wedge q) \equiv \neg p \vee \neg q$.
22. If $m$ and $n$ are natural numbers such that $m+n \geq 20$ then show that either $m \geq 10$ or $\mathrm{n} \geq 10$.
23. Give a direct proof to the theorem "The square of an odd integer is also an odd integer".

## SECTION - D

Long Essay Questions. Answer any 2.
24. Obtain a reduction formula for $\int x^{n} e^{-x} d x$ and hence show that the improper integral $\int_{0}^{\infty} x^{n} e^{-x} d x=n!$, where $n$ is any positive integer.
25. Using polar integration, find the area of the region $R$ in the $x y$ - plane enclosed by the circle $x^{2}+y^{2}=4$, above the line $y=1$, and below the line $y=\sqrt{3} x$.
26. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{3+2 \mathrm{x}}$ using trapezoidal rule with $\mathrm{n}=2$. Compare with the exact solution. Also find the number of sub intervals required if the error is to be less than $5 \times 10^{-4}$.
27. Prove that there are infinitely many prime numbers.

